Tillage in rainfed arable systems Long Term Experimental Plot 4

Experimenting crop diversification and low input farming

Experimentation plot of 0.5 ha with rainfed barley located in Huesca (Spain).

2 MANAGEMENTS COMPARED WITHIN THIS CASE STUDY

NON TILLAGE

CONVENTIONAL TILLAGE

WHY IMPLEMENT THESE MANAGEMENT PRACTICES?

In order to favor more sustainable cropping systems and more resilience facing present/future threats such as global warming

MAIN BENEFITS

MAIN DRAWBACKS

AGRONOMICS

AGRONOMICS

- 1. No-tillage conserved more water in the soil, resulting in **higher crop yields**
- 2. Water use efficiency (crop yield/water used) increased in no-tillage systems
- 3. **Higher nitrogen uptake** under no-tillage resulted in lower nitrogen levels in the soil profile
- More attention is needed in weed control under no-tillage
- 2. Crop sowing and establishment need more caution
- 3. No-tillage implementation needs **special machinery** (seeder)

ENVIRONMENTAL

ENVIRONMENTAL

- No-tillage favored soil organic carbon storage in the upper soil layers
- 2. The shift from a conventional tillage to a no-tillage system **increased soil physical condition**
- 3. The layer of crop residues in soil surface under no-tillage **reduces soil erosion rates**
- 1. No-tillage may increase soil compaction under certain conditions especially the first years after adoption

FINAL CONCLUSION

Is it beneficial to adopt these sustainable practices?

No-tillage is a promising practice in rainfed semiarid systems because of its beneficial effects such as soil and water conservation and crop yield enhancement

